Search results
Results from the WOW.Com Content Network
function draw_categorical(n) // where n is the number of samples to draw from the categorical distribution r = 1 s = 0 for i from 1 to k // where k is the number of categories v = draw from a binomial(n, p[i] / r) distribution // where p[i] is the probability of category i for j from 1 to v z[s++] = i // where z is an array in which the results ...
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables. General tests [ edit ]
The data type is a fundamental concept in statistics and controls what sorts of probability distributions can logically be used to describe the variable, the permissible operations on the variable, the type of regression analysis used to predict the variable, etc.
A categorical variable that can take on exactly two values is termed a binary variable or a dichotomous variable; an important special case is the Bernoulli variable. Categorical variables with more than two possible values are called polytomous variables; categorical variables are often assumed to be polytomous unless otherwise specified.
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series .
One is not restricted to using only one of these measures of central tendency. If the data being analyzed is categorical, then the only measure of central tendency that can be used is the mode. However, if the data is numerical in nature (ordinal or interval/ratio) then the mode, median, or mean can all be used to describe the data. Using more ...
In statistics, multiple correspondence analysis (MCA) is a data analysis technique for nominal categorical data, used to detect and represent underlying structures in a data set. It does this by representing data as points in a low-dimensional Euclidean space .
In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.