enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  3. Proportionate reduction of error - Wikipedia

    en.wikipedia.org/wiki/Proportionate_reduction_of...

    It is a goodness of fit measure of statistical models, and forms the mathematical basis for several correlation coefficients. [1] The summary statistics is particularly useful and popular when used to evaluate models where the dependent variable is binary, taking on values {0,1}.

  4. Mean percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_percentage_error

    Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result, the formula can be used as a measure of the bias in the forecasts. A disadvantage of this measure is that it is undefined whenever a single actual value is zero.

  5. Regression dilution - Wikipedia

    en.wikipedia.org/wiki/Regression_dilution

    Under certain assumptions (typically, normal distribution assumptions) there is a known ratio between the true slope, and the expected estimated slope. Frost and Thompson (2000) review several methods for estimating this ratio and hence correcting the estimated slope. [ 4 ]

  6. Slope - Wikipedia

    en.wikipedia.org/wiki/Slope

    Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.

  7. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.

  8. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  9. Theil–Sen estimator - Wikipedia

    en.wikipedia.org/wiki/Theil–Sen_estimator

    It has also been called Sen's slope estimator, [1] [2] slope selection, [3] [4] the single median method, [5] the Kendall robust line-fit method, [6] and the Kendall–Theil robust line. [7] It is named after Henri Theil and Pranab K. Sen , who published papers on this method in 1950 and 1968 respectively, [ 8 ] and after Maurice Kendall ...