enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  3. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    The hybrid can certainly be normalized, as it is the sum of two normalized wavefunctions. Orthogonality must be established so that the two hybrid orbitals can be involved in separate covalent bonds. The inner product of orthogonal orbitals must be zero and computing the inner product of the constructed hybrids gives the following calculation.

  4. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Two atomic orbitals in phase create a larger electron density, which leads to the σ orbital. If the two 1s orbitals are not in phase, a node between them causes a jump in energy, the σ* orbital. From the diagram you can deduce the bond order, how many bonds are formed between the two atoms. For this molecule it is equal to one.

  5. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    The angle between any two bonds is the tetrahedral bond angle of 109°28' [3] (around 109.5°). Pauling supposed that in the presence of four hydrogen atoms, the s and p orbitals form four equivalent combinations which he called hybrid orbitals. Each hybrid is denoted sp 3 to indicate its composition, and is directed along one of the four C–H ...

  6. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    Molecular orbitals are said to be degenerate if they have the same energy. For example, in the homonuclear diatomic molecules of the first ten elements, the molecular orbitals derived from the p x and the p y atomic orbitals result in two degenerate bonding orbitals (of low energy) and two degenerate antibonding orbitals (of high energy). [13]

  7. Ball-and-stick model - Wikipedia

    en.wikipedia.org/wiki/Ball-and-stick_model

    Double and triple bonds are usually represented by two or three curved rods, respectively, or alternately by correctly positioned sticks for the sigma and pi bonds. In a good model, the angles between the rods should be the same as the angles between the bonds , and the distances between the centers of the spheres should be proportional to the ...

  8. Walsh diagram - Wikipedia

    en.wikipedia.org/wiki/Walsh_diagram

    Walsh diagrams in conjunction with molecular orbital theory can also be used as a tool to predict reactivity. By generating a Walsh Diagram and then determining the HOMO/LUMO of that molecule, it can be determined how the molecule is likely to react. In the following example, the Lewis acidity of AH 3 molecules such as BH 3 and CH 3 + is predicted.

  9. Three-center four-electron bond - Wikipedia

    en.wikipedia.org/wiki/Three-center_four-electron...

    This exercise generates the diagram at right (Figure 1). Three molecular orbitals result from the combination of the three relevant atomic orbitals, with the four electrons occupying the two MOs lowest in energy – a bonding MO delocalized across all three centers, and a non-bonding MO localized on the peripheral centers.