enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...

  3. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. The motivation for backpropagation is to train a multi-layered neural network such that it can learn the appropriate internal representations to allow it to learn any arbitrary mapping of input to output.

  4. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  5. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]

  6. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.

  7. Neural backpropagation - Wikipedia

    en.wikipedia.org/wiki/Neural_backpropagation

    Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).

  8. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Later in the 1950s, Frank Rosenblatt used SGD to optimize his perceptron model, demonstrating the first applicability of stochastic gradient descent to neural networks. [12] Backpropagation was first described in 1986, with stochastic gradient descent being used to efficiently optimize parameters across neural networks with multiple hidden ...

  9. Backpropagation through structure - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through...

    Backpropagation through structure (BPTS) is a gradient-based technique for training recursive neural networks, proposed in a 1996 paper written by Christoph Goller and Andreas Küchler. [ 1 ] References