Search results
Results from the WOW.Com Content Network
The input of acoustic energy to the room at the modal frequencies and multiples thereof causes standing waves. The nodes and antinodes of these standing waves result in the loudness of the particular resonant frequency being different at different locations of the room. These standing waves can be considered a temporary storage of acoustic ...
Room acoustics is a subfield of acoustics dealing with the behaviour of sound in enclosed or partially-enclosed spaces. The architectural details of a room influences the behaviour of sound waves within it, with the effects varying by frequency.
A reverberation room or reverberation chamber is a room designed to create reverberation, a diffuse or random incidence sound field (i.e. one with a uniform distribution of acoustic energy and random direction of sound incidence over a short time period). Reverberation chambers tend to be large rooms (the resulting sound field becomes more ...
The total absorption in sabins (and hence reverberation time) generally changes depending on frequency (which is defined by the acoustic properties of the space). The equation does not take into account room shape or losses from the sound traveling through the air (important in larger spaces).
Acoustic enhancement is a subtle type of sound reinforcement system used to augment direct, reflected, or reverberant sound. While sound reinforcement systems are usually used to increase the sound level of the sound source (like a person speaking into a microphone, or musical instruments in a pop ensemble), acoustic enhancement systems are typically used to increase the acoustic energy in the ...
Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. [1] It is defined [2] as "through a surface, the product of the sound pressure, and the component of the particle velocity, at a point on the surface in the direction normal to the surface, integrated over that surface."
S. Ellison and M. A. Poletti, Control of room acoustic parameters by the Variable Room acoustics System, Reproduced Sound 2004 M. A. Poletti and R. Schwenke, “Prediction and Verification of Powered Loudspeaker Requirements for an Assisted Reverberation System,” 121st AES Convention 2006 October 5–8, San Francisco, CA, USA
The energy transformed into heat is said to have been 'lost'. [1] When sound from a loudspeaker collides with the walls of a room, part of the sound's energy is reflected back into the room, part is transmitted through the walls, and part is absorbed into the walls. Just as the acoustic energy was transmitted through the air as pressure ...