enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Anomaly detection is crucial in the petroleum industry for monitoring critical machinery. [20] Martí et al. used a novel segmentation algorithm to analyze sensor data for real-time anomaly detection. [20] This approach helps promptly identify and address any irregularities in sensor readings, ensuring the reliability and safety of petroleum ...

  3. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    Isolation Forest is an algorithm for data anomaly detection using binary trees.It was developed by Fei Tony Liu in 2008. [1] It has a linear time complexity and a low memory use, which works well for high-volume data.

  4. Change detection - Wikipedia

    en.wikipedia.org/wiki/Change_detection

    In statistical analysis, change detection or change point detection tries to identify times when the probability distribution of a stochastic process or time series changes. In general the problem concerns both detecting whether or not a change has occurred, or whether several changes might have occurred, and identifying the times of any such ...

  5. ELKI - Wikipedia

    en.wikipedia.org/wiki/ELKI

    Version 0.2 (July 2009) added functionality for time series analysis, in particular distance functions for time series. [ 13 ] Version 0.3 (March 2010) extended the choice of anomaly detection algorithms and visualization modules.

  6. CUSUM - Wikipedia

    en.wikipedia.org/wiki/CUSUM

    The low CUSUM value, detecting a negative anomaly, + = (, +) where ω {\displaystyle \omega } is a critical level parameter (tunable, same as threshold T) that's used to adjust the sensitivity of change detection: larger ω {\displaystyle \omega } makes CUSUM less sensitive to the change and vice versa.

  7. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.

  8. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Each file represents a single experiment and contains a single anomaly. The dataset represents a multivariate time series collected from the sensors installed on the testbed. There are two markups for Outlier detection (point anomalies) and Changepoint detection (collective anomalies) problems 30+ files (v0.9) CSV Anomaly detection

  9. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Anomaly detection; Data cleaning ... RNN by gradient descent is the "backpropagation through time" (BPTT) algorithm, ... Time series anomaly detection [125] Text-to ...