Search results
Results from the WOW.Com Content Network
In the ultrashort time limit, in the order of the diffusion time a 2 /D, where a is the particle radius, the diffusion is described by the Langevin equation. At a longer time, the Langevin equation merges into the Stokes–Einstein equation. The latter is appropriate for the condition of the diluted solution, where long-range diffusion is ...
where ϕ(r, t) is the density of the diffusing material at location r and time t and D(ϕ, r) is the collective diffusion coefficient for density ϕ at location r; and ∇ represents the vector differential operator del. If the diffusion coefficient depends on the density then the equation is nonlinear, otherwise it is linear.
The diffusion distance at time between two points can be measured as the similarity of two points in the observation space with the connectivity between them. It is given by It is given by D t ( x i , x j ) 2 = ∑ y ( p ( y , t | x i ) − p ( y , t | x j ) ) 2 ϕ 0 ( y ) {\displaystyle D_{t}(x_{i},x_{j})^{2}=\sum _{y}{\frac {(p(y,t|x_{i})-p(y ...
Diffusion models may also be used to solve inverse boundary value problems in which some information about the depositional environment is known from paleoenvironmental reconstruction and the diffusion equation is used to figure out the sediment influx and time series of landform changes.
The Fourier number can be derived by nondimensionalizing the time-dependent diffusion equation.As an example, consider a rod of length that is being heated from an initial temperature by imposing a heat source of temperature > at time = and position = (with along the axis of the rod).
Interstitial Atomic diffusion across a 4-coordinated lattice. Note that the atoms often block each other from moving to adjacent sites. As per Fick’s law, the net flux (or movement of atoms) is always in the opposite direction of the concentration gradient.
Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles.
Anomalous diffusion is a diffusion process with a non-linear relationship between the ... and time. This behavior is in ... and is the distance to the nearest ...