enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    In the ultrashort time limit, in the order of the diffusion time a 2 /D, where a is the particle radius, the diffusion is described by the Langevin equation. At a longer time, the Langevin equation merges into the Stokes–Einstein equation. The latter is appropriate for the condition of the diluted solution, where long-range diffusion is ...

  3. Diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Diffusion_equation

    where ϕ(r, t) is the density of the diffusing material at location r and time t and D(ϕ, r) is the collective diffusion coefficient for density ϕ at location r; and ∇ represents the vector differential operator del. If the diffusion coefficient depends on the density then the equation is nonlinear, otherwise it is linear.

  4. Diffusion map - Wikipedia

    en.wikipedia.org/wiki/Diffusion_map

    The diffusion distance at time between two points can be measured as the similarity of two points in the observation space with the connectivity between them. It is given by It is given by D t ( x i , x j ) 2 = ∑ y ( p ( y , t | x i ) − p ( y , t | x j ) ) 2 ϕ 0 ( y ) {\displaystyle D_{t}(x_{i},x_{j})^{2}=\sum _{y}{\frac {(p(y,t|x_{i})-p(y ...

  5. Diffusion - Wikipedia

    en.wikipedia.org/wiki/Diffusion

    Diffusion models may also be used to solve inverse boundary value problems in which some information about the depositional environment is known from paleoenvironmental reconstruction and the diffusion equation is used to figure out the sediment influx and time series of landform changes.

  6. Fourier number - Wikipedia

    en.wikipedia.org/wiki/Fourier_number

    The Fourier number can be derived by nondimensionalizing the time-dependent diffusion equation.As an example, consider a rod of length that is being heated from an initial temperature by imposing a heat source of temperature > at time = and position = (with along the axis of the rod).

  7. Lattice diffusion coefficient - Wikipedia

    en.wikipedia.org/wiki/Lattice_diffusion_coefficient

    Interstitial Atomic diffusion across a 4-coordinated lattice. Note that the atoms often block each other from moving to adjacent sites. As per Fick’s law, the net flux (or movement of atoms) is always in the opposite direction of the concentration gradient.

  8. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles.

  9. Anomalous diffusion - Wikipedia

    en.wikipedia.org/wiki/Anomalous_diffusion

    Anomalous diffusion is a diffusion process with a non-linear relationship between the ... and time. This behavior is in ... and is the distance to the nearest ...