Search results
Results from the WOW.Com Content Network
The graph of a function with a horizontal (y = 0), vertical (x = 0), and oblique asymptote (purple line, given by y = 2x) A curve intersecting an asymptote infinitely many times In analytic geometry , an asymptote ( / ˈ æ s ɪ m p t oʊ t / ) of a curve is a line such that the distance between the curve and the line approaches zero as one or ...
Vertical tangent on the function ƒ(x) at x = c. In mathematics, particularly calculus, a vertical tangent is a tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.
As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n 2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n 2. The function f(n) is said to be "asymptotically equivalent to n 2, as n → ∞".
The tangent function = / has a simple zero at = and vertical asymptotes at = /, where it has a simple pole of residue . Again, owing to the periodicity, the zeros are all the integer multiples of π {\displaystyle \pi } and the poles are odd multiples of π / 2 {\displaystyle \pi /2} , all having the same residue.
The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the given point. [3] Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the
This research-based exploration of functions is designed to better prepare students for college-level calculus and provide grounding for other mathematics and science courses. In this course, students study a broad spectrum of function types that are foundational for careers in mathematics, physics, biology, health science, social science, and ...
For example, the parent function = / has a horizontal and a vertical asymptote, and occupies the first and third quadrant, and all of its transformed forms have one horizontal and vertical asymptote, and occupies either the 1st and 3rd or 2nd and 4th quadrant.
Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function x ↦ 1 x {\displaystyle x\mapsto {\frac {1}{x}}} is concave for negative x and convex for positive x , but it has no points of inflection because 0 is not in the domain of the function.