Search results
Results from the WOW.Com Content Network
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every prime expressed as M p = 2 p − 1 has a corresponding perfect number ...
The Euclid–Euler theorem states that an even natural number is perfect if and only if it has the form 2 p−1 M p, where M p is a Mersenne prime. [1] The perfect number 6 comes from p = 2 in this way, as 2 2−1 M 2 = 2 × 3 = 6, and the Mersenne prime 7 corresponds in the same way to the perfect number 28.
A perfect totient number is an integer that is equal to the sum of its iterated totients. That is, we apply the totient function to a number n, apply it again to the resulting totient, and so on, until the number 1 is reached, and add together the resulting sequence of numbers; if the sum equals n, then n is a perfect totient number.
Alternating triangular numbers (1, 6, 15, 28, ...) are also hexagonal numbers. Every even perfect number is triangular (as well as hexagonal), given by the formula = (+) = where M p is a Mersenne prime. No odd perfect numbers are known; hence, all known perfect numbers are triangular.
The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...
Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]
A semiperfect number that is not divisible by any smaller semiperfect number is called primitive. Every number of the form 2 m p for a natural number m and an odd prime number p such that p < 2 m+1 is also semiperfect. In particular, every number of the form 2 m (2 m+1 − 1) is semiperfect, and indeed perfect if 2 m+1 − 1 is a Mersenne prime.