enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    Entropy has been historically, e.g. by Clausius and Helmholtz, associated with disorder. However, in common speech, order is used to describe organization, structural regularity, or form, like that found in a crystal compared with a gas. This commonplace notion of order is described quantitatively by Landau theory.

  3. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    The physical entropy may be on a "per quantity" basis (h) which is called "intensive" entropy instead of the usual total entropy which is called "extensive" entropy. The "shannons" of a message (Η) are its total "extensive" information entropy and is h times the number of bits in the message.

  4. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    This is possible provided the total entropy change of the system plus the surroundings is positive as required by the second law: ΔS tot = ΔS + ΔS R > 0. For the three examples given above: 1) Heat can be transferred from a region of lower temperature to a higher temperature in a refrigerator or in a heat pump. These machines must provide ...

  5. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    It is in this sense that entropy is a measure of the energy in a system that cannot be used to do work. An irreversible process degrades the performance of a thermodynamic system, designed to do work or produce cooling, and results in entropy production. The entropy generation during a reversible process is zero. Thus entropy production is a ...

  6. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [22] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.

  7. H-theorem - Wikipedia

    en.wikipedia.org/wiki/H-theorem

    H is a forerunner of Shannon's information entropy. Claude Shannon denoted his measure of information entropy H after the H-theorem. [17] The article on Shannon's information entropy contains an explanation of the discrete counterpart of the quantity H, known as the information

  8. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    The heat δQ for this process is the energy required to change water from the solid state to the liquid state, and is called the enthalpy of fusion, i.e. ΔH for ice fusion. The entropy of the surrounding room decreases less than the entropy of the ice and water increases: the room temperature of 298 K is larger than 273 K and therefore the ...

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Entropy cannot be measured directly. The change in entropy with respect to pressure at a constant temperature is the same as the negative change in specific volume with respect to temperature at a constant pressure, for a simple compressible system. Maxwell relations in thermodynamics are often used to derive thermodynamic relations. [2]