enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...

  3. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The existing 64- and 128-bit formats follow this rule, but the 16- and 32-bit formats have more exponent bits (5 and 8 respectively) than this formula would provide (3 and 7 respectively). As with IEEE 754-1985, the biased-exponent field is filled with all 1 bits to indicate either infinity (trailing significand field = 0) or a NaN (trailing ...

  4. 32-bit computing - Wikipedia

    en.wikipedia.org/wiki/32-bit_computing

    A 32-bit register can store 2 32 different values. The range of integer values that can be stored in 32 bits depends on the integer representation used. With the two most common representations, the range is 0 through 4,294,967,295 (2 32 − 1) for representation as an binary number, and −2,147,483,648 (−2 31) through 2,147,483,647 (2 31 − 1) for representation as two's complement.

  5. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    IEEE 754-1985. IEEE 754-1985[1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2] During its 23 years, it was the most widely used format for floating-point computation.

  6. 2,147,483,647 - Wikipedia

    en.wikipedia.org/wiki/2,147,483,647

    The number 2,147,483,647 (or hexadecimal 7FFFFFFF 16) is the maximum positive value for a 32-bit signed binary integer in computing. It is therefore the maximum value for variables declared as integers (e.g., as int) in many programming languages.

  7. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    On a typical computer system, a double-precision (64-bit) binary floating-point number has a coefficient of 53 bits (including 1 implied bit), an exponent of 11 bits, and 1 sign bit. Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ ...

  8. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    The number of bits needed for the precision and range desired must be chosen to store the fractional and integer parts of a number. For instance, using a 32-bit format, 16 bits may be used for the integer and 16 for the fraction. The eight's bit is followed by the four's bit, then the two's bit, then the one's bit.

  9. Java syntax - Wikipedia

    en.wikipedia.org/wiki/Java_syntax

    64-bit (8-byte) 0: float: java.lang.Float: floating point number ±1.401298E−45 through ±3.402823E+38 32-bit (4-byte) 0.0f [4] double: java.lang.Double: floating point number ±4.94065645841246E−324 through ±1.79769313486232E+308 64-bit (8-byte) 0.0: boolean: java.lang.Boolean: Boolean true or false: 1-bit (1-bit) false: char: java.lang ...