Search results
Results from the WOW.Com Content Network
Calculus. In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: The first terms of the series sum to approximately , where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it ...
If r < 1, then the series is absolutely convergent. If r > 1, then the series diverges. If r = 1, the ratio test is inconclusive, and the series may converge or diverge. Root test or nth root test. Suppose that the terms of the sequence in question are non-negative. Define r as follows:
has radius of convergence 1 and diverges at every point on the boundary. Example 2: The power series for g(z) = −ln(1 − z), expanded around z = 0, which is =, has radius of convergence 1, and diverges for z = 1 but converges for all other points on the boundary. The function f(z) of Example 1 is the derivative of g(z). Example 3: The power ...
We say that "the limit of the sequence equals ." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). [1] If such a limit exists and is finite, the sequence is called convergent. [2] A sequence that does not converge is said to be divergent. [3]
1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series 1 2 + 1 4 + 1 8 + 1 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...
Every normal convergent series is uniformly convergent, locally uniformly convergent, and compactly uniformly convergent. This is very important, since it assures that any re-arrangement of the series, any derivatives or integrals of the series, and sums and products with other convergent series will converge to the "correct" value. If ∑ n ...
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2] Since the problem had withstood the attacks of ...
In probability theory, the law of large numbers (LLN) is a mathematical law that states that the average of the results obtained from a large number of independent random samples converges to the true value, if it exists. [1] More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean ...