enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resilience (materials science) - Wikipedia

    en.wikipedia.org/wiki/Resilience_(materials_science)

    Modulus of resilience (U r) is measured in a unit of joule per cubic meter (J·m −3) in the SI system, i.e. elastical deformation energy per surface of test specimen (merely for gauge-length part). Like the unit of tensile toughness ( U T ), the unit of resilience can be easily calculated by using area underneath the stress–strain ( σ ...

  3. Toughness - Wikipedia

    en.wikipedia.org/wiki/Toughness

    Toughness as defined by the area under the stress–strain curve. In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. [1] Toughness is the strength with which the material opposes rupture. One definition of material toughness is the amount of energy per unit ...

  4. Fracture toughness - Wikipedia

    en.wikipedia.org/wiki/Fracture_toughness

    Fracture toughness. In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having ...

  5. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a ...

  6. Mechanical properties of biomaterials - Wikipedia

    en.wikipedia.org/wiki/Mechanical_properties_of...

    Fracture strength. The strength of a material is defined as the maximum stress that can be endured before fracture occurs. Strength of biomaterials (bioceramics) is an important mechanical property because they are brittle. In brittle materials like bioceramics, cracks easily propagate when the material is subject to tensile loading, unlike ...

  7. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Strength of materials. The field of strength of materials (also called mechanics of materials) typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure ...

  8. Stress triaxiality - Wikipedia

    en.wikipedia.org/wiki/Stress_Triaxiality

    In continuum mechanics, stress triaxiality is the relative degree of hydrostatic stress in a given stress state. [1] It is often used as a triaxiality factor, T.F, which is the ratio of the hydrostatic stress, , to the Von Mises equivalent stress, . [2][3][4] Stress triaxiality has important applications in fracture mechanics and can often be ...

  9. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    Young's modulus (E) describes tensile and compressive elasticity, or the tendency of an object to deform along an axis when opposing forces are applied along that axis; it is defined as the ratio of tensile stress to tensile strain. It is often referred to simply as the elastic modulus.