enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    [2] [4] Oresme's work, and the contemporaneous work of Richard Swineshead on a different series, marked the first appearance of infinite series other than the geometric series in mathematics. [5] However, this achievement fell into obscurity. [6] Additional proofs were published in the 17th century by Pietro Mengoli [2] [7] and by Jacob Bernoulli.

  3. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    Each side of the green triangle is exactly ⁠ 1 / 3 ⁠ the size of a side of the large blue triangle and therefore has exactly ⁠ 1 / 9 ⁠ the area. Similarly, each yellow triangle has ⁠ 1 / 9 ⁠ the area of a green triangle, and so forth. All of these triangles can be represented in terms of geometric series: the blue triangle's area is ...

  4. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is

  5. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...

  6. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.

  7. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    is the sum of an arithmetico-geometric series defined by = =, =, and =, and it converges to =. This sequence corresponds to the expected number of coin tosses required to obtain "tails". The probability T k {\displaystyle T_{k}} of obtaining tails for the first time at the k th toss is as follows:

  8. Faulhaber's formula - Wikipedia

    en.wikipedia.org/wiki/Faulhaber's_formula

    Since a = n(n + 1)/2, these formulae show that for an odd power (greater than 1), the sum is a polynomial in n having factors n 2 and (n + 1) 2, while for an even power the polynomial has factors n, n + 1/2 and n + 1.

  9. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test . One can also use this technique to prove Abel's test : If ∑ n b n {\textstyle \sum _{n}b_{n}} is a convergent series , and a n {\displaystyle a_{n}} a bounded monotone sequence , then S N = ∑ n = 0 N a n b n {\textstyle S_{N}=\sum _{n=0}^{N}a_{n}b_{n ...