Search results
Results from the WOW.Com Content Network
Reflection is often used as part of software testing, such as for the runtime creation/instantiation of mock objects. Reflection is also a key strategy for metaprogramming. In some object-oriented programming languages such as C# and Java, reflection can be used to bypass member accessibility rules. For C#-properties this can be achieved by ...
In computer programming, a mirror is a reflection mechanism that is completely decoupled from the object whose structure is being introspected. This is as opposed to traditional reflection, for example in Java, where one introspects an object using methods from the object itself (e.g. getClass()).
Introspection should not be confused with reflection, which goes a step further and is the ability for a program to manipulate the metadata, properties, and functions of an object at runtime. Some programming languages also possess that capability (e.g., Java, Python, Julia, and Go).
Like Javadoc tags, Java annotations can be read from source files. Unlike Javadoc tags, Java annotations can also be embedded in and read from Java class files generated by the Java compiler. This allows annotations to be retained by the Java virtual machine at run-time and read via reflection. [2]
The Common Language Infrastructure (CLI) records information about compiled classes as metadata. Like the type library in the Component Object Model, this enables applications to support and discover the interfaces, classes, types, methods, and fields in the assembly. The process of reading such metadata is called "reflection".
In that case a new object B is created, and the fields values of A are copied over to B. [3] [4] [5] This is also known as a field-by-field copy, [6] [7] [8] field-for-field copy, or field copy. [9] If the field value is a reference to an object (e.g., a memory address) it copies the reference, hence referring to the same object as A does, and ...
Dylan is a multi-paradigm programming language that includes support for functional and object-oriented programming (OOP), and is dynamic and reflective while providing a programming model designed to support generating efficient machine code, including fine-grained control over dynamic and static behaviors.
ASM is Java-centric at present, and does not currently have a backend that exposes other bytecode implementations (such as .NET bytecode, Python bytecode, etc.). The name "ASM" is not an acronym: it is just a reference to the asm keyword of C, which allows some functions to be implemented in assembly language.