Search results
Results from the WOW.Com Content Network
The inverse Raman effect is a form of Raman scattering first noted by W. J. Jones and Boris P. Stoicheff. In some circumstances, Stokes scattering can exceed anti-Stokes scattering; in these cases the continuum (on leaving the material) is observed to have an absorption line (a dip in intensity) at ν L +ν M.
[88] [89] Use of the English versions, "Raman effect" and "Raman lines" immediately followed. [90] [22] [91] In addition to being a new phenomenon itself, the Raman effect was one of the earliest proofs of the quantum nature of light. Robert W. Wood at the Johns Hopkins University was the first American to confirm the Raman effect in the early ...
Silicon exhibits the Raman effect, in which a photon is exchanged for a photon with a slightly different energy, corresponding to an excitation or a relaxation of the material. Silicon's Raman transition is dominated by a single, very narrow frequency peak, which is problematic for broadband phenomena such as Raman amplification , but is ...
Raman amplification / ˈ r ɑː m ən / [1] is based on the stimulated Raman scattering (SRS) phenomenon, when a lower frequency 'signal' photon induces the inelastic scattering of a higher-frequency 'pump' photon in an optical medium in the nonlinear regime. As a result of this, another 'signal' photon is produced, with the surplus energy ...
Although the inelastic scattering of light was predicted by Adolf Smekal in 1923, [3] it was not observed in practice until 1928. The Raman effect was named after one of its discoverers, the Indian scientist C. V. Raman, who observed the effect in organic liquids in 1928 together with K. S. Krishnan, and independently by Grigory Landsberg and Leonid Mandelstam in inorganic crystals. [1]
In 1988, Linn Mollenauer and his team transmitted soliton pulses over 4,000 kilometres using a phenomenon called the Raman effect, named for the Indian scientist Sir C. V. Raman who first described it in the 1920s, to provide optical gain in the fibre.
Stimulated Raman spectroscopy, also referred to as stimulated Raman scattering (SRS), is a form of spectroscopy employed in physics, chemistry, biology, and other fields. . The basic mechanism resembles that of spontaneous Raman spectroscopy: a pump photon, of the angular frequency , which is scattered by a molecule has some small probability of inducing some vibrational (or rotational ...
RRS effect (Resonance Raman Scaterring) The Raman resonance effect produces an increase in Raman intensity up to 10 6 times. In this phenomenon, the monochromatic light interaction with the sample produces the transition of the molecules from the fundamental state to an excited electronic state, instead of a virtual state as in normal Raman spectroscopy.