enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    Activation energy can be thought of as the magnitude of the potential barrier (sometimes called the energy barrier) separating minima of the potential energy surface pertaining to the initial and final thermodynamic state. For a chemical reaction to proceed at a reasonable rate, the temperature of the system should be high enough such that ...

  3. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Like all catalysts, enzymes increase the reaction rate by lowering its activation energy. Some enzymes can make their conversion of substrate to product occur many millions of times faster. An extreme example is orotidine 5'-phosphate decarboxylase, which allows a reaction that would otherwise take millions of years to occur in milliseconds.

  4. Activation - Wikipedia

    en.wikipedia.org/wiki/Activation

    The energy of activation [1] specifies the amount of free energy the reactants must possess (in addition to their rest energy) in order to initiate their conversion into corresponding products—that is, in order to reach the transition state for the reaction. The energy needed for activation can be quite small, and often it is provided by the ...

  5. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    The free energy of activation, ΔG ‡, is defined in transition state theory to be the energy such that ‡ = ⁡ ‡ ′ holds. The parameters Δ H ‡ and Δ S ‡ can then be inferred by determining Δ G ‡ = Δ H ‡ – T Δ S ‡ at different temperatures.

  6. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    Many enzymes including serine protease, cysteine protease, protein kinase and phosphatase evolved to form transient covalent bonds between them and their substrates to lower the activation energy and allow the reaction to occur. This process can be divided into 2 steps: formation and breakdown.

  7. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    As shown on the right, enzymes with a substituted-enzyme mechanism can exist in two states, E and a chemically modified form of the enzyme E*; this modified enzyme is known as an intermediate. In such mechanisms, substrate A binds, changes the enzyme to E* by, for example, transferring a chemical group to the active site, and is then released.

  8. Enzyme catalysis - Wikipedia

    en.wikipedia.org/wiki/Enzyme_catalysis

    The binding energy of the enzyme-substrate complex cannot be considered as an external energy which is necessary for the substrate activation. The enzyme of high energy content may firstly transfer some specific energetic group X 1 from catalytic site of the enzyme to the final place of the first bound reactant, then another group X 2 from the ...

  9. Activated complex - Wikipedia

    en.wikipedia.org/wiki/Activated_complex

    The activation energy is the minimum amount of energy to initiate a chemical reaction and form the activated complex. [6] The energy serves as a threshold that reactant molecules must surpass to overcome the energy barrier and transition into the activated complex.