enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Countable set - Wikipedia

    en.wikipedia.org/wiki/Countable_set

    In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. [a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time ...

  3. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠, and the set of all subsets of the set of natural numbers.

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.

  5. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    The concept of countability led to countable operations and objects that are used in various areas of mathematics. For example, in 1878, Cantor introduced countable unions of sets. [67] In the 1890s, Émile Borel used countable unions in his theory of measure, and René Baire used countable ordinals to define his classes of functions. [68]

  6. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    In 1891, with the publication of Cantor's diagonal argument, he demonstrated that there are sets of numbers that cannot be placed in one-to-one correspondence with the set of natural numbers, i.e. uncountable sets that contain more elements than there are in the infinite set of natural numbers. [9]

  7. Schauder basis - Wikipedia

    en.wikipedia.org/wiki/Schauder_basis

    Note that some authors define Schauder bases to be countable (as above), while others use the term to include uncountable bases. In either case, the sums themselves always are countable. An uncountable Schauder basis is a linearly ordered set rather than a sequence, and each sum inherits the order of its terms from this linear ordering. They ...

  8. Enumeration - Wikipedia

    en.wikipedia.org/wiki/Enumeration

    A set is countable if it can be enumerated, that is, if there exists an enumeration of it. Otherwise, it is uncountable. For example, the set of the real numbers is uncountable. A set is finite if it can be enumerated by means of a proper initial segment {1, ..., n} of the natural numbers, in which case, its cardinality is n.

  9. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    ℵ 1 is, by definition, the cardinality of the set of all countable ordinal numbers. This set is denoted by ω 1 (or sometimes Ω). The set ω 1 is itself an ordinal number larger than all countable ones, so it is an uncountable set. Therefore, ℵ 1 is distinct from ℵ 0.