enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equal incircles theorem - Wikipedia

    en.wikipedia.org/wiki/Equal_incircles_theorem

    If the blue circles are equal, the green circles are also equal. In geometry, the equal incircles theorem derives from a Japanese Sangaku, and pertains to the following construction: a series of rays are drawn from a given point to a given line such that the inscribed circles of the triangles formed by adjacent rays and the base line are equal.

  3. Limiting point (geometry) - Wikipedia

    en.wikipedia.org/wiki/Limiting_point_(geometry)

    An inversion centered at p transforms A and B into concentric circles. [3] The midpoint of the two limiting points is the point where the radical axis of A and B crosses the line through their centers. This intersection point has equal power distance to all the circles in the pencil containing A and B. The limiting points themselves can be ...

  4. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from u to v ), b (from u to w ), and c (from v to w ), and the angle of the corner opposite c is C , then the (first) spherical ...

  5. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The cosine rule may be used to give the angles A, B, and C but, to avoid ambiguities, the half angle formulae are preferred. Case 2: two sides and an included angle given (SAS). The cosine rule gives a and then we are back to Case 1. Case 3: two sides and an opposite angle given (SSA). The sine rule gives C and then we have Case 7. There are ...

  6. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    This proof uses the power of a point theorem directly, without the auxiliary triangles obtained by constructing a tangent or a chord. Construct a circle with center B and radius a (see Figure 9), which intersects the secant through A and C in C and K. The power of the point A with respect to the circle is equal to both AB 2 − BC 2 and AC·AK ...

  7. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    Let O 1 and O 2 be the centers of the two circles, C 1 and C 2 and let r 1 and r 2 be their radii, with r 1 > r 2; in other words, circle C 1 is defined as the larger of the two circles. Two different methods may be used to construct the external and internal tangent lines. External tangents Construction of the outer tangent

  8. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    In spherical geometry, the basic concepts are point and great circle. However, two great circles on a plane intersect in two antipodal points, unlike coplanar lines in Elliptic geometry. In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center.

  9. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.