enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Natural number - Wikipedia

    en.wikipedia.org/wiki/Natural_number

    The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω.

  3. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Transfinite numbers: Numbers that are greater than any natural number. Ordinal numbers: Finite and infinite numbers used to describe the order type of well-ordered sets. Cardinal numbers: Finite and infinite numbers used to describe the cardinalities of sets.

  4. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    The set N of natural numbers is defined in this system as the smallest set containing 0 and closed under the successor function S defined by S(n) = n ∪ {n}. The structure N, 0, S is a model of the Peano axioms (Goldrei 1996). The existence of the set N is equivalent to the axiom of infinity in ZF set theory.

  5. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the cardinality (or the cardinal number) of the set. A set that is not a finite set is called an infinite set. For example, the set of all positive integers is infinite:

  6. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    A set has cardinality if and only if it is countably infinite, that is, there is a bijection (one-to-one correspondence) between it and the natural numbers. Examples of such sets are the set of natural numbers, irrespective of including or excluding zero, the set of all integers,

  7. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Considering the natural numbers as a subset of the real numbers, and assuming that we know already that the real numbers are complete (again, either as an axiom or a theorem about the real number system), i.e., every bounded (from below) set has an infimum, then also every set of natural numbers has an infimum, say .

  8. Infinite set - Wikipedia

    en.wikipedia.org/wiki/Infinite_set

    The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. [1] It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers.

  9. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...