Search results
Results from the WOW.Com Content Network
The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid [1] [2] and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding environmental pressure.
The boiling point elevation happens both when the solute is an electrolyte, such as various salts, and a nonelectrolyte. In thermodynamic terms, the origin of the boiling point elevation is entropic and can be explained in terms of the vapor pressure or chemical potential of the solvent. In both cases, the explanation depends on the fact that ...
The boiling point of water is typically considered to be 100 °C (212 °F; 373 K), especially at sea level. Pressure and a change in the composition of the liquid may alter the boiling point of the liquid. High elevation cooking generally takes longer since boiling point is a function of atmospheric pressure.
The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and cause the liquid to form vapor bubbles.
The term "boiling frog syndrome" is a metaphor used to describe the failure to act against a problematic situation which will increase in severity until reaching catastrophic proportions. [7] It thereby encapsulates the barely noticeable impact of slow environmental degradation that has been described by Daniel Pauly as shifting baselines .
Freezing point depression and boiling point elevation In chemistry , colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. [ 1 ]
Boiling-point diagram. The preceding equilibrium equations are typically applied for each phase (liquid or vapor) individually, but the result can be plotted in a single diagram. In a binary boiling-point diagram, temperature (T ) (or sometimes pressure) is graphed vs. x 1. At any given temperature (or pressure) where both phases are present ...
Boiling occurs when the equilibrium vapor pressure of the substance is greater than or equal to the atmospheric pressure. The temperature at which boiling occurs is the boiling temperature, or boiling point. The boiling point varies with the pressure of the environment.