enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [2]). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

  3. Collineation - Wikipedia

    en.wikipedia.org/wiki/Collineation

    This is different from the behavior in higher dimensions, and thus one gives a more restrictive definition, specified so that the fundamental theorem of projective geometry holds. In this definition, when V has dimension two, a collineation from PG ( V ) to PG ( W ) is a map α : D ( V ) → D ( W ) , such that:

  4. Collinearity equation - Wikipedia

    en.wikipedia.org/wiki/Collinearity_equation

    Let x, y, and z refer to a coordinate system with the x- and y-axis in the sensor plane. Denote the coordinates of the point P on the object by ,,, the coordinates of the image point of P on the sensor plane by x and y and the coordinates of the projection (optical) centre by ,,.

  5. Simson line - Wikipedia

    en.wikipedia.org/wiki/Simson_line

    In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. [1] The line through these points is the Simson line of P, named for Robert Simson. [2] The concept was first published, however, by William Wallace in 1799, [3] and is sometimes called the Wallace line. [4]

  6. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    In geometry, Monge's theorem, named after Gaspard Monge, states that for any three circles in a plane, none of which is completely inside one of the others, the intersection points of each of the three pairs of external tangent lines are collinear.

  7. Cross-ratio - Wikipedia

    en.wikipedia.org/wiki/Cross-ratio

    German geometers call it das Doppelverhältnis [double ratio]. Carl von Staudt was unsatisfied with past definitions of the cross-ratio relying on algebraic manipulation of Euclidean distances rather than being based purely on synthetic projective geometry concepts.

  8. General position - Wikipedia

    en.wikipedia.org/wiki/General_position

    This definition can be generalized further: one may speak of points in general position with respect to a fixed class of algebraic relations (e.g. conic sections).In algebraic geometry this kind of condition is frequently encountered, in that points should impose independent conditions on curves passing through them.

  9. Trilinear polarity - Wikipedia

    en.wikipedia.org/wiki/Trilinear_polarity

    Triangle DEF is the cevian triangle of P with reference to triangle ABC. Let the pairs of line (BC, EF), (CA, FD), (DE, AB) intersect at X, Y, Z respectively. By Desargues' theorem, the points X, Y, Z are collinear. The line of collinearity is the axis of perspectivity of triangle ABC and triangle DEF.