Search results
Results from the WOW.Com Content Network
The PRI is sensitive to changes in carotenoid pigments (e.g. xanthophyll pigments) in live foliage. Carotenoid pigments are indicative of photosynthetic light use efficiency, or the rate of carbon dioxide uptake by foliage per unit energy absorbed. As such, it is used in studies of vegetation productivity and stress.
Violaxanthin is a xanthophyll pigment with an orange color found in a variety of plants. Violaxanthin is the product of the epoxidation of zeaxanthin where the oxygen atoms are from reactive oxygen species (ROS). Such ROS's arise when a plant is subject to solar radiation so intense that the light cannot all be absorbed by the chlorophyll. [2]
Phaeophytin a: [1] a gray-brown pigment; Phaeophytin b: [1] a yellow-brown pigment; Chlorophyll a: a blue-green pigment; Chlorophyll b: a yellow-green pigment; Chlorophyll a is the most common of the six, present in every plant that performs photosynthesis. Each pigment absorbs light more efficiently in a different part of the electromagnetic ...
Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion.
Pelargonidin can be found in red geraniums (Geraniaceae). It is the predominant pigment causing the red coloration in the spathes of Philodendron (Araceae). The orange-coloured flowers of blue pimpernel (Anagallis monelli, Myrsinaceae) have a higher concentration of pelargonidin pigment.
Chlorophyll, the most abundant plant pigment, is most efficient in capturing red and blue light. Accessory pigments such as carotenes and xanthophylls harvest some green light and pass it on to the photosynthetic process, but enough of the green wavelengths are reflected to give leaves their characteristic color.
Flavonoids are widely distributed in plants, fulfilling many functions. [1] They are the most important plant pigments for flower coloration, producing yellow or red/blue pigmentation in petals designed to attract pollinator animals. In higher plants, they are involved in UV filtration, symbiotic nitrogen fixation, and floral pigmentation.
Chlorophyll is the primary pigment in plants; it is a chlorin that absorbs blue and red wavelengths of light while reflecting a majority of green. It is the presence and relative abundance of chlorophyll that gives plants their green color. All land plants and green algae possess two forms of this pigment: chlorophyll a and chlorophyll b.