Search results
Results from the WOW.Com Content Network
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram.It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line.
A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous states) occur and coexist at equilibrium.
This equal area rule can also be derived by making use of the Helmholtz free energy. [24] In any event the Maxwell construction derives from the Gibbs condition of material equilibrium. However, even though g f = g g {\displaystyle g_{f}=g_{g}} is more fundamental it is more abstract than the equal area rule, which is understood geometrically.
English: An phase diagram designed to explain the lever rule. Based on an image from Smith, William F.; Hashemi, Javad (2006), Foundations of Materials Science and Engineering (4th ed.), McGraw-Hill, p. 319, ISBN 0-07-295358-6.
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
There are many correct collections of "Schreinemaker's rules" and the choice to use a given set of rules depends on the nature of the phase diagrams being created. Due to the phrasing of the Morey–Schreinemaker coincidence theorem, only one rule is essential to the Schreinemaker's rules. This is the so-called metastable extensions rule: [1]
This section only mentions one type of binary phase diagram, as an illustration of the working of the phase rule for C=2. For others, the last paragraphs mentions some possibilities and provides a link to the article on (thermodynamic) phase diagram. Re: Lever rule – it works for mole fractions as well.
Calculating the number of components in a system is necessary when applying Gibbs' phase rule in determination of the number of degrees of freedom of a system. The number of components is equal to the number of distinct chemical species (constituents), minus the number of chemical reactions between them, minus the number of any constraints ...