Search results
Results from the WOW.Com Content Network
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.
The area K of a trapezoid is given by [13] K = a + b 2 ⋅ h = m h {\displaystyle K={\frac {a+b}{2}}\cdot h=mh} where a and b are the lengths of the parallel sides, h is the height (the perpendicular distance between these sides), and m is the arithmetic mean of the lengths of the two parallel sides.
That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: [1] [2] A = s 2 (square). The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes taken as a ...
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
The Median of the Trapezoid theorem states that the median of a trapezoid is equal in length to the average of the lengths of the two bases. [1] This theorem is a fundamental concept in geometry and has various applications in mathematics, particularly in the study of quadrilaterals .
The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)
where l i is the length of each surface in contact with the aqueous body. In open channel flow, the wetted perimeter is defined as the surface of the channel bottom and sides in direct contact with the aqueous body. Friction losses typically increase with an increasing wetted perimeter, resulting in a decrease in head. [1]