Search results
Results from the WOW.Com Content Network
Disruptive selection is a specific type of natural selection that actively selects against the intermediate in a population, favoring both extremes of the spectrum. Disruptive selection is inferred to oftentimes lead to sympatric speciation through a phyletic gradualism mode of evolution. Disruptive selection can be caused or influenced by ...
disruptive selection. Also diversifying selection. A mode of natural selection in which the extreme values of a trait or phenotype within a breeding population are favored over intermediate values, causing allele frequencies to shift over time away from the intermediate. This causes the variance in the trait to increase and results in the ...
The uncommon disruptive selection also acts during transition periods when the current mode is sub-optimal, but alters the trait in more than one direction. In particular, if the trait is quantitative and univariate then both higher and lower trait levels are favoured. Disruptive selection can be a precursor to speciation. [57]
This selection is an important mechanism in the selection of complex and diversifying traits, and is also a primary force of speciation. [7] Changes in a genotype and consequently a phenotype can either be advantageous, harmful, or neutral and depend on the environment in which the phenotypic shift is happening.
Two useful introductions to the fundamental theory underlying the unit of selection issue and debate, which also present examples of multi-level selection from the entire range of the biological hierarchy (typically with entities at level N-1 competing for increased representation, i.e., higher frequency, at the immediately higher level N, e.g., organisms in populations or cell lineages in ...
In genetics, underdominance, also known as homozygote advantage, heterozygote disadvantage, or negative overdominance," [1] is the opposite of overdominance.It is the selection against the heterozygote, causing disruptive selection [2] and divergent genotypes.
Disruptive selection is a specific type of natural selection that actively selects against the intermediate in a population, favoring both extremes of the spectrum. Disruptive selection is inferred to often times lead to sympatric speciation through a phyletic gradualism mode of evolution.
Stabilizing selection (not to be confused with negative or purifying selection [1] [2]) is a type of natural selection in which the population mean stabilizes on a particular non-extreme trait value. This is thought to be the most common mechanism of action for natural selection because most traits do not appear to change drastically over time. [3]