enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load. It may be quantified in terms of an angle (angular displacement) or a distance (linear displacement).

  3. Marcus' method - Wikipedia

    en.wikipedia.org/wiki/Marcus'_method

    Marcus's method is a structural analysis used in the design of reinforced concrete slabs.The method was developed by Henri Marcus and described in 1938 in Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten. [1]

  4. Eurocode 2: Design of concrete structures - Wikipedia

    en.wikipedia.org/wiki/Eurocode_2:_Design_of...

    Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.

  5. Arching or compressive membrane action in reinforced concrete ...

    en.wikipedia.org/wiki/Arching_or_Compressive...

    Park's approach was based on rigid plastic slab strip theory, and required the assumption of a critical deflection of one half of the slab depth at failure. Park's approach was later extended by Park and Gamble [9] in their method for predicting the plastic load-deformation response of laterally restrained slabs.

  6. Span (engineering) - Wikipedia

    en.wikipedia.org/wiki/Span_(engineering)

    Span is a significant factor in finding the strength and size of a beam as it determines the maximum bending moment and deflection. The maximum bending moment M m a x {\displaystyle M_{max}} and deflection δ m a x {\displaystyle \delta _{max}} in the pictured beam is found using: [ 2 ]

  7. Wood–Armer method - Wikipedia

    en.wikipedia.org/wiki/Wood–Armer_method

    The Wood–Armer method is a structural analysis method based on finite element analysis used to design the reinforcement for concrete slabs. [1] This method provides simple equations to design a concrete slab based on the output from a finite element analysis software.

  8. Permissible stress design - Wikipedia

    en.wikipedia.org/wiki/Permissible_stress_design

    Permissible stress design is a design philosophy used by mechanical engineers and civil engineers. [1] [2] The civil designer ensures that the stresses developed in a structure due to service loads do not exceed the elastic limit. This limit is usually determined by ensuring that stresses remain within the limits through the use of factors of ...

  9. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Using the free body diagram in the right side of figure 3, and making a summation of moments about point x: = + = where w is the lateral deflection. According to Euler–Bernoulli beam theory , the deflection of a beam is related with its bending moment by: M = − E I d 2 w d x 2 . {\displaystyle M=-EI{\frac {d^{2}w}{dx^{2}}}.}