Search results
Results from the WOW.Com Content Network
Also known as min-max scaling or min-max normalization, rescaling is the simplest method and consists in rescaling the range of features to scale the range in [0, 1] or [−1, 1]. Selecting the target range depends on the nature of the data. The general formula for a min-max of [0, 1] is given as: [3]
This can be generalized to restrict the range of values in the dataset between any arbitrary points and , using for example ′ = + (). Note that some other ratios, such as the variance-to-mean ratio ( σ 2 μ ) {\textstyle \left({\frac {\sigma ^{2}}{\mu }}\right)} , are also done for normalization, but are not nondimensional: the units do not ...
where each network module can be a linear transform, a nonlinear activation function, a convolution, etc. () is the input vector, () is the output vector from the first module, etc. BatchNorm is a module that can be inserted at any point in the feedforward network.
There are a number of matrix norms that act on the singular values of the matrix. Frequently used examples include the Schatten p-norms, with p = 1 or 2. For example, matrix regularization with a Schatten 1-norm, also called the nuclear norm, can be used to enforce sparsity in the spectrum of a matrix.
To quantile normalize two or more distributions to each other, without a reference distribution, sort as before, then set to the average (usually, arithmetic mean) of the distributions. So the highest value in all cases becomes the mean of the highest values, the second highest value becomes the mean of the second highest values, and so on.
Cosine similarity can be seen as a method of normalizing document length during comparison. In the case of information retrieval, the cosine similarity of two documents will range from , since the term frequencies cannot be negative. This remains true when using TF-IDF weights. The angle between two term frequency vectors cannot be greater than ...
The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression .
Computing the Levenshtein distance is based on the observation that if we reserve a matrix to hold the Levenshtein distances between all prefixes of the first string and all prefixes of the second, then we can compute the values in the matrix in a dynamic programming fashion, and thus find the distance between the two full strings as the last ...