enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of fractals by Hausdorff dimension - Wikipedia

    en.wikipedia.org/wiki/List_of_fractals_by...

    According to Benoit Mandelbrot, "A fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension." [ 1 ] Presented here is a list of fractals, ordered by increasing Hausdorff dimension, to illustrate what it means for a fractal to have a low or a high dimension.

  3. n-flake - Wikipedia

    en.wikipedia.org/wiki/N-flake

    An n-flake, polyflake, or Sierpinski n-gon, [1]: 1 is a fractal constructed starting from an n-gon. This n-gon is replaced by a flake of smaller n-gons, such that the scaled polygons are placed at the vertices, and sometimes in the center. This process is repeated recursively to result in the fractal.

  4. Fractal dimension - Wikipedia

    en.wikipedia.org/wiki/Fractal_dimension

    The terms fractal dimension and fractal were coined by Mandelbrot in 1975, [16] about a decade after he published his paper on self-similarity in the coastline of Britain. . Various historical authorities credit him with also synthesizing centuries of complicated theoretical mathematics and engineering work and applying them in a new way to study complex geometries that defied description in ...

  5. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...

  6. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2] This set of polyhedrons is named after Plato.

  7. 120-cell - Wikipedia

    en.wikipedia.org/wiki/120-cell

    Net. In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C 120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron [1] and hecatonicosahedroid.

  8. Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Mandelbrot_set

    The Mandelbrot set is widely considered the most popular fractal, [45] [46] and has been referenced several times in popular culture. The Jonathan Coulton song "Mandelbrot Set" is a tribute to both the fractal itself and to the man it is named after, Benoit Mandelbrot. [47]

  9. Minkowski–Bouligand dimension - Wikipedia

    en.wikipedia.org/wiki/Minkowski–Bouligand...

    The digits in the "odd place-intervals", i.e. between digits 2 2n+1 and 2 2n+2 − 1 are not restricted and may take any value. This fractal has upper box dimension 2/3 and lower box dimension 1/3, a fact which may be easily verified by calculating N(ε) for = and noting that their values behave differently for n even and odd.