Search results
Results from the WOW.Com Content Network
While the task of testing a single logic gate at a time sounds simple, there is an obstacle to overcome. For today's highly complex designs, most gates are deeply embedded whereas the test equipment is only connected to the primary Input/outputs (I/Os) and/or some physical test points. The embedded gates, hence, must be manipulated through ...
ATPG (acronym for both automatic test pattern generation and automatic test pattern generator) is an electronic design automation method or technology used to find an input (or test) sequence that, when applied to a digital circuit, enables automatic test equipment to distinguish between the correct circuit behavior and the faulty circuit behavior caused by defects.
Digital design focuses on logical correctness, maximizing circuit density, and placing circuits so that clock and timing signals are routed efficiently. Analog IC design also has specializations in power IC design and RF IC design. Analog IC design is used in the design of op-amps, linear regulators, phase locked loops, oscillators and active ...
Credit: Prof. Robert Dutton in CRC Electronic Design Automation for IC Handbook, Vol II, Chapter 25, by permission. Semiconductor device modeling creates models for the behavior of semiconductor devices based on fundamental physics, such as the doping profiles of the devices.
In semiconductor testing, the device under test is a die on a wafer or the resulting packaged part. A connection system is used, connecting the part to automatic or manual test equipment. The test equipment then applies power to the part, supplies stimulus signals, then measures and evaluates the resulting outputs from the device.
Depending on the product, the machines that we are referring to could mean a combination of Automatic Test Equipment (ATE), handler, interface board, and test program that drives the ATE, as with the case of the IC chip testing. Test automation is a big part of a test engineer's job. The whole intention of automating the test is as follows:
Scan chain is a technique used in design for testing. The objective is to make testing easier by providing a simple way to set and observe every flip-flop in an IC. The basic structure of scan include the following set of signals in order to control and observe the scan mechanism. Scan_in and scan_out define the input and output of a scan chain.
In December 2009, a technical subcommittee of Accellera — a standards organization in the electronic design automation (EDA) industry — voted to establish the UVM and decided to base this new standard on the Open Verification Methodology (OVM-2.1.1), [1] a verification methodology developed jointly in 2007 by Cadence Design Systems and Mentor Graphics.