enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points , that is the points where the slope of the function is zero. [ 2 ]

  3. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The eigenvalues of a 3×3 matrix are the roots of a cubic polynomial which is the characteristic polynomial of the matrix. The characteristic equation of a third-order constant coefficients or Cauchy–Euler (equidimensional variable coefficients) linear differential equation or difference equation is a cubic equation.

  4. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    The largest zero of this polynomial which corresponds to the second largest zero of the original polynomial is found at 3 and is circled in red. The degree 5 polynomial is now divided by () to obtain = + + which is shown in yellow. The zero for this polynomial is found at 2 again using Newton's method and is circled in yellow.

  5. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    Bairstow's algorithm inherits the local quadratic convergence of Newton's method, except in the case of quadratic factors of multiplicity higher than 1, when convergence to that factor is linear. A particular kind of instability is observed when the polynomial has odd degree and only one real root.

  6. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If the original polynomial is the product of factors at least two of which are of degree 2 or higher, this technique only provides a partial factorization; otherwise the factorization is complete. In particular, if there is exactly one non-linear factor, it will be the polynomial left after all linear factors have been factorized out.

  7. Resolvent cubic - Wikipedia

    en.wikipedia.org/wiki/Resolvent_cubic

    Graph of the polynomial function x 4 + x 3 – x 2 – 7x/4 – 1/2 (in green) together with the graph of its resolvent cubic R 4 (y) (in red). The roots of both polynomials are visible too. In algebra, a resolvent cubic is one of several distinct, although related, cubic polynomials defined from a monic polynomial of degree four:

  8. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.

  9. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    The Barth surface, shown in the figure is the geometric representation of the solutions of a polynomial system reduced to a single equation of degree 6 in 3 variables. Some of its numerous singular points are visible on the image. They are the solutions of a system of 4 equations of degree 5 in 3 variables.