Search results
Results from the WOW.Com Content Network
A totient number is a value of Euler's totient function: that is, an m for which there is at least one n for which φ(n) = m. The valency or multiplicity of a totient number m is the number of solutions to this equation. [41] A nontotient is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient.
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
Over a finite field with a prime number p of elements, for any integer n that is not a multiple of p, the cyclotomic polynomial factorizes into () irreducible polynomials of degree d, where () is Euler's totient function and d is the multiplicative order of p modulo n.
The cardinality of this set can be calculated with the totient function: φ(12) = 4. Some other reduced residue systems modulo 12 are: Some other reduced residue systems modulo 12 are: {13,17,19,23}
The following is a table of the Bell series of well-known arithmetic functions. The Möbius function has () =.; The Mobius function squared has () = +.; Euler's totient has () =.; The multiplicative identity of the Dirichlet convolution has () =
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...
Euler's theorem Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive.
In fact, the Disquisitiones contains two proofs: The one in Article 54 is a nonconstructive existence proof, while the proof in Article 55 is constructive. A primitive root exists if and only if n is 1, 2, 4, p k or 2p k, where p is an odd prime and k > 0. For all other values of n the multiplicative group of integers modulo n is not cyclic.