enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    In mathematics and physics, the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in ...

  3. Hess's law - Wikipedia

    en.wikipedia.org/wiki/Hess's_law

    If the enthalpy changes are known for all the equations in the sequence, their sum will be the enthalpy change for the net equation. If the net enthalpy change is negative ( Δ H net < 0 {\displaystyle \Delta H_{\text{net}}<0} ), the reaction is exothermic and is more likely to be spontaneous ; positive Δ H values correspond to endothermic ...

  4. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.

  5. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Only one equation of state will not be sufficient to reconstitute the fundamental equation. All equations of state will be needed to fully characterize the thermodynamic system. Note that what is commonly called "the equation of state" is just the "mechanical" equation of state involving the Helmholtz potential and the volume:

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G (Gibbs free energy) or H . [1] The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy , and volume for a closed system in ...

  7. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    Internal energy is a principal property of the thermodynamic state, while heat and work are modes of energy transfer by which a process may change this state. A change of internal energy of a system may be achieved by any combination of heat added or removed and work performed on or by the system.

  8. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    A respected modern author states the first law of thermodynamics as "Heat is a form of energy", which explicitly mentions neither internal energy nor adiabatic work. Heat is defined as energy transferred by thermal contact with a reservoir, which has a temperature, and is generally so large that addition and removal of heat do not alter its ...

  9. Nernst heat theorem - Wikipedia

    en.wikipedia.org/wiki/Nernst_heat_theorem

    The above equation is a modern statement of the theorem. Nernst often used a form that avoided the concept of entropy. [1] Graph of energies at low temperatures. Another way of looking at the theorem is to start with the definition of the Gibbs free energy (G), G = H - TS, where H stands for enthalpy.