enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Total internal reflection - Wikipedia

    en.wikipedia.org/wiki/Total_internal_reflection

    Fig. 1: Underwater plants in a fish tank, and their inverted images (top) formed by total internal reflection in the water–air surface. In physics, total internal reflection (TIR) is the phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflected back into ...

  3. Optical ring resonators - Wikipedia

    en.wikipedia.org/wiki/Optical_ring_resonators

    Interference is the process by which two waves superimpose to form a resultant wave of greater or less amplitude. Interference usually refers to the interaction of two distinct waves and it is a result of the linearity of Maxwell Equation. Interference could be constructive or destructive depending on the relative phase of the two waves.

  4. Total internal reflection microscopy - Wikipedia

    en.wikipedia.org/wiki/Total_internal_reflection...

    Total internal reflection microscopy is a specialized optical imaging technique for object tracking and detection utilizing the light scattered from an evanescent field in the vicinity of a dielectric interface. Its advantages are a high signal-to-noise ratio and a high spatial resolution in the vertical dimension.

  5. ARROW waveguide - Wikipedia

    en.wikipedia.org/wiki/ARROW_waveguide

    The confinement of light on the upper surface of the guiding core is provided by the total internal reflection with air. ARROW relies on the principle of thin-film interference. It is created by forming a Fabry-Perot cavity in the transverse direction, with cladding layers that function as Fabry-Perot etalons . [ 1 ]

  6. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    The phase shift of the reflected wave on total internal reflection can similarly be obtained from the phase angles of r p and r s (whose magnitudes are unity in this case). These phase shifts are different for s and p waves, which is the well-known principle by which total internal reflection is used to effect polarization transformations.

  7. Total internal reflection fluorescence microscope - Wikipedia

    en.wikipedia.org/wiki/Total_internal_reflection...

    A total internal reflection fluorescence microscope (TIRFM) is a type of microscope with which a thin region of a specimen, usually less than 200 nanometers can be observed. TIRFM is an imaging modality which uses the excitation of fluorescent cells in a thin optical specimen section that is supported on a glass slide.

  8. Optical fiber - Wikipedia

    en.wikipedia.org/wiki/Optical_fiber

    A laser bouncing down an acrylic rod, illustrating the total internal reflection of light in a multi-mode optical fiber. Fiber with large core diameter (greater than 10 micrometers) may be analyzed by geometrical optics. Such fiber is called multi-mode fiber, from the electromagnetic analysis (see below).

  9. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    This of course is impossible, and the light in such cases is completely reflected by the boundary, a phenomenon known as total internal reflection. The largest possible angle of incidence which still results in a refracted ray is called the critical angle; in this case the refracted ray travels along the boundary between the two media.