Search results
Results from the WOW.Com Content Network
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...
A topological space is a set endowed with a structure, called a topology, which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces , and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology.
In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (,) is said to be metrizable if there is a metric : [,) such that the topology induced by d is . Metrization theorems are theorems that give sufficient conditions for a topological space to ...
A topological space is a set endowed with a structure, called a topology, which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces , and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology.
Baire space. A space X is a Baire space if it is not meagre in itself. Equivalently, X is a Baire space if the intersection of countably many dense open sets is dense. Door space. A topological space is a door space if every subset is open or closed (or both). Topological Homogeneity.
A topological space is a set together with a collection of subsets of satisfying: [3]. The empty set and are in .; The union of any collection of sets in is also in .; The intersection of any pair of sets in is also in . Equivalently, the intersection of any finite collection of sets in is also in .
The term symmetric space also has another meaning.) A topological space is a T 1 space if and only if it is both an R 0 space and a Kolmogorov (or T 0) space (i.e., a space in which distinct points are topologically distinguishable). A topological space is an R 0 space if and only if its Kolmogorov quotient is a T 1 space.
The empty set (considered as a topological space) is the initial object of Top; any singleton topological space is a terminal object. There are thus no zero objects in Top. The product in Top is given by the product topology on the Cartesian product. The coproduct is given by the disjoint union of topological spaces.