Search results
Results from the WOW.Com Content Network
Shared memory is declared in the PTX file via lines at the start of the form: .shared .align 8 .b8 pbatch_cache [ 15744 ]; // define 15,744 bytes, aligned to an 8-byte boundary Writing kernels in PTX requires explicitly registering PTX modules via the CUDA Driver API, typically more cumbersome than using the CUDA Runtime API and Nvidia's CUDA ...
This object is used by most other packages and thus forms the core object of the library. The Tensor also supports mathematical operations like max, min, sum, statistical distributions like uniform, normal and multinomial, and BLAS operations like dot product, matrix–vector multiplication, matrix–matrix multiplication and matrix product.
MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24] Yes [25] [26] Yes [25] Yes [25] Yes With Parallel Computing Toolbox [27] Yes Microsoft Cognitive ...
A number of pieces of deep learning software are built on top of PyTorch, including Tesla Autopilot, [15] Uber's Pyro, [16] Hugging Face's Transformers, [17] PyTorch Lightning, [18] [19] and Catalyst. [20] [21] PyTorch provides two high-level features: [22] Tensor computing (like NumPy) with strong acceleration via graphics processing units (GPU)
This follows the functionality of MATLAB Tensor toolbox and Hierarchical Tucker Toolbox. ITensors.jl [37] is a library for rapidly creating correct and efficient tensor network algorithms. This is the Julia version of ITensor, not a wrapper around the C++ version but full implementations by Julia language.
In computing, CUDA (Compute Unified Device Architecture) is a proprietary [2] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
PyTorch: Tensors and Dynamic neural networks in Python with GPU acceleration. TensorFlow: Apache 2.0-licensed Theano-like library with support for CPU, GPU and Google's proprietary TPU, [116] mobile; Theano: A deep-learning library for Python with an API largely compatible with the NumPy library.