Search results
Results from the WOW.Com Content Network
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is ...
Alibi and alias transformations are also known as active and passive transformations, respectively. Pre-multiplication or post-multiplication The same point P can be represented either by a column vector v or a row vector w. Rotation matrices can either pre-multiply column vectors (Rv), or post-multiply row vectors (wR).
The equations defining the transformation in two dimensions, which rotates the xy axes counterclockwise through an angle into the x′y′ axes, are derived as follows. In the xy system, let the point P have polar coordinates ( r , α ) {\displaystyle (r,\alpha )} .
Glide reflections with translation by the same distance are in the same class. In 3D: Inversions with respect to all points are in the same class. Rotations by the same angle are in the same class. Rotations about an axis combined with translation along that axis are in the same class if the angle is the same and the translation distance is the ...
Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system (alibi meaning "being somewhere else at the same time"); and passive or alias transformations which leave points fixed but change the ...
(A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a rigid motion, a Euclidean motion, or a proper rigid transformation. In dimension two, a rigid motion is either a translation or a rotation.
For example, if the affine transformation acts on the plane and if the determinant of is 1 or −1 then the transformation is an equiareal mapping. Such transformations form a subgroup called the equi-affine group. [13] A transformation that is both equi-affine and a similarity is an isometry of the plane taken with Euclidean distance.
In mathematics, transformation geometry (or transformational geometry) is the name of a mathematical and pedagogic take on the study of geometry by focusing on groups of geometric transformations, and properties that are invariant under them.