enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    Example of one of two shortest-path trees where the root vertex is the red square vertex. The edges in the tree are indicated with green lines while the two dashed lines are edges in the full graph but not in the tree. The numbers beside the vertices indicate the distance from the root vertex.

  3. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  4. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    One example is the constrained shortest path problem, [16] which attempts to minimize the total cost of the path while at the same time maintaining another metric below a given threshold. This makes the problem NP-complete (such problems are not believed to be efficiently solvable for large sets of data, see P = NP problem ).

  5. Suurballe's algorithm - Wikipedia

    en.wikipedia.org/wiki/Suurballe's_algorithm

    The following example shows how Suurballe's algorithm finds the shortest pair of disjoint paths from A to F. Figure A illustrates a weighted graph G. Figure B calculates the shortest path P 1 from A to F (A–B–D–F). Figure C illustrates the shortest path tree T rooted at A, and the computed distances from A to every vertex (u).

  6. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Compared to Dijkstra's algorithm, the A* algorithm only finds the shortest path from a specified source to a specified goal, and not the shortest-path tree from a specified source to all possible goals. This is a necessary trade-off for using a specific-goal-directed heuristic. For Dijkstra's algorithm, since the entire shortest-path tree is ...

  7. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    The parent attribute of each node is useful for accessing the nodes in a shortest path, for example by backtracking from the destination node up to the starting node, once the BFS has been run, and the predecessors nodes have been set. Breadth-first search produces a so-called breadth first tree.

  8. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...

  9. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    The k shortest path routing problem is a generalization of the shortest path routing problem in a given network. It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path). A variation of the problem is the loopless k shortest paths.