enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    In connected graphs where shortest paths are well-defined (i.e. where there are no negative-length cycles), we may construct a shortest-path tree using the following algorithm: Compute dist( u ), the shortest-path distance from root v to vertex u in G using Dijkstra's algorithm or Bellman–Ford algorithm .

  3. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm (/ ˈ d aɪ k s t r ə z / DYKE-strəz) is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, a road network. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.

  4. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Find the Shortest Path: Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph. Augment the Flow: Find the minimum capacity along the shortest path. Increase the flow on the edges of the shortest path by this minimum capacity.

  5. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    Equivalent paths between A and B in a 2D environment. Pathfinding or pathing is the search, by a computer application, for the shortest route between two points. It is a more practical variant on solving mazes. This field of research is based heavily on Dijkstra's algorithm for finding the shortest path on a weighted graph.

  6. Open Shortest Path First - Wikipedia

    en.wikipedia.org/wiki/Open_Shortest_Path_First

    It computes the shortest-path tree for each route using a method based on Dijkstra's algorithm. The OSPF routing policies for constructing a route table are governed by link metrics associated with each routing interface.

  7. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path). A variation of the problem is the loopless k shortest paths. Finding k shortest paths is possible by extending Dijkstra's algorithm or the Bellman-Ford algorithm. [citation needed]

  8. Parallel all-pairs shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_all-pairs...

    The Dijkstra algorithm originally was proposed as a solver for the single-source-shortest-paths problem. However, the algorithm can easily be used for solving the All-Pair-Shortest-Paths problem by executing the Single-Source variant with each node in the role of the root node. In pseudocode such an implementation could look as follows:

  9. Parallel single-source shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_single-source...

    There are classical sequential algorithms which solve this problem, such as Dijkstra's algorithm. In this article, however, we present two parallel algorithms solving this problem. Another variation of the problem is the all-pairs-shortest-paths (APSP) problem, which also has parallel approaches: Parallel all-pairs shortest path algorithm.