Search results
Results from the WOW.Com Content Network
Concurrent lines arise in the dual of Pappus's hexagon theorem. For each side of a cyclic hexagon, extend the adjacent sides to their intersection, forming a triangle exterior to the given side. Then the segments connecting the circumcenters of opposite triangles are concurrent.
Given a set of collinear points, by plane duality we obtain a set of lines all of which meet at a common point. The property that this set of lines has (meeting at a common point) is called concurrency, and the lines are said to be concurrent lines. Thus, concurrency is the plane dual notion to collinearity.
Line a is a great circle, the equivalent of a straight line in spherical geometry. Line c is equidistant to line a but is not a great circle. It is a parallel of latitude. Line b is another geodesic which intersects a in two antipodal points. They share two common perpendiculars (one shown in blue).
Concurrent lines, in geometry, multiple lines or curves intersecting at a single point; Concurrency (road), an instance of one physical road bearing two or more different route numbers; Concurrent (Easter), the weekday of 24 March Julian used to calculate Julian Easter
Lines that meet at the same point are said to be concurrent. The set of all lines in a plane incident with the same point is called a pencil of lines centered at that point. The computation of the intersection of two lines shows that the entire pencil of lines centered at a point is determined by any two of the lines that intersect at that point.
This occurs if the lines are parallel, or if they intersect each other. Two lines that are not coplanar are called skew lines . Distance geometry provides a solution technique for the problem of determining whether a set of points is coplanar, knowing only the distances between them.
General position is a property of configurations of points, or more generally other subvarieties (lines in general position, so no three concurrent, and the like). General position is an extrinsic notion, which depends on an embedding as a subvariety. Informally, subvarieties are in general position if they cannot be described more simply than ...
Then the three lines A ′ A ′ ′, B ′ B ′ ′, C ′ C ′ ′, are concurrent. [2] The point at which they concur is the orthopole. Due to their many properties, [3] orthopoles have been the subject of a large literature. [4] Some key topics are determination of the lines having a given orthopole [5] and orthopolar circles. [6]