enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Endergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Endergonic_reaction

    All physical and chemical systems in the universe follow the second law of thermodynamics and proceed in a downhill, i.e., exergonic, direction.Thus, left to itself, any physical or chemical system will proceed, according to the second law of thermodynamics, in a direction that tends to lower the free energy of the system, and thus to expend energy in the form of work.

  3. Exergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Exergonic_reaction

    The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]

  4. Equilibrium unfolding - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_unfolding

    In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.

  5. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...

  6. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    The change in free energy, ΔG, for each step in the glycolysis pathway can be calculated using ΔG = ΔG°′ + RTln Q, where Q is the reaction quotient. This requires knowing the concentrations of the metabolites. All of these values are available for erythrocytes, with the exception of the concentrations of NAD + and NADH.

  7. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    The total free energy change of a reaction is independent of the activation energy however. Physical and chemical reactions can be either exergonic or endergonic, but the activation energy is not related to the spontaneity of a reaction. The overall reaction energy change is not altered by the activation energy.

  8. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    a A + d D → c C. In this case, K eq can be defined as ratio of B to C rather than the equilibrium constant. When ⁠ B / C ⁠ > 1, B is the favored product, and the data on the Van 't Hoff plot will be in the positive region. When ⁠ B / C ⁠ < 1, C is the favored product, and the data on the Van 't Hoff plot will be in the negative region.

  9. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    All elements in their standard states (diatomic oxygen gas, graphite, etc.) have standard Gibbs free energy change of formation equal to zero, as there is no change involved. Δ f G = Δ f G˚ + RT ln Q f, where Q f is the reaction quotient. At equilibrium, Δ f G = 0, and Q f = K, so the equation becomes Δ f G˚ = −RT ln K,