enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irreducible polynomial - Wikipedia

    en.wikipedia.org/wiki/Irreducible_polynomial

    In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.

  3. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial. In representation theory, an irreducible representation is a nontrivial representation with no nontrivial proper subrepresentations. Similarly, an irreducible module is another name for a simple module.

  4. Hilbert's irreducibility theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_irreducibility...

    In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible.

  5. Spectrum of a C*-algebra - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_C*-algebra

    In mathematics, the spectrum of a C*-algebra or dual of a C*-algebra A, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A.A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with x ∈ A.

  6. Eisenstein's criterion - Wikipedia

    en.wikipedia.org/wiki/Eisenstein's_criterion

    Consider the polynomial Q(x) = 3x 4 + 15x 2 + 10.In order for Eisenstein's criterion to apply for a prime number p it must divide both non-leading coefficients 15 and 10, which means only p = 5 could work, and indeed it does since 5 does not divide the leading coefficient 3, and its square 25 does not divide the constant coefficient 10.

  7. Separable polynomial - Wikipedia

    en.wikipedia.org/wiki/Separable_polynomial

    with K the field of rational functions in the indeterminate T over the finite field with p elements. Here one can prove directly that P ( X ) is irreducible and not separable. This is actually a typical example of why inseparability matters; in geometric terms P represents the mapping on the projective line over the finite field, taking co ...

  8. Cohn's irreducibility criterion - Wikipedia

    en.wikipedia.org/wiki/Cohn's_irreducibility...

    Cohn's irreducibility criterion is a sufficient condition for a polynomial to be irreducible in [] —that is, for it to be unfactorable into the product of lower-degree polynomials with integer coefficients.

  9. Schur orthogonality relations - Wikipedia

    en.wikipedia.org/wiki/Schur_orthogonality_relations

    The space of complex-valued class functions of a finite group G has a natural inner product: , := | | () ¯ where () ¯ denotes the complex conjugate of the value of on g.With respect to this inner product, the irreducible characters form an orthonormal basis for the space of class functions, and this yields the orthogonality relation for the rows of the character table: