Search results
Results from the WOW.Com Content Network
In the C++ programming language, argument-dependent lookup (ADL), or argument-dependent name lookup, [1] applies to the lookup of an unqualified function name depending on the types of the arguments given to the function call. This behavior is also known as Koenig lookup, as it is often attributed to Andrew Koenig, though he is not its inventor ...
Notice that the type of the result can be regarded as everything past the first supplied argument. This is a consequence of currying, which is made possible by Haskell's support for first-class functions; this function requires two inputs where one argument is supplied and the function is "curried" to produce a function for the argument not supplied.
stdarg.h is a header in the C standard library of the C programming language that allows functions to accept an indefinite number of arguments. [1] It provides facilities for stepping through a list of function arguments of unknown number and type. C++ provides this functionality in the header cstdarg.
A function definition starts with the name of the type of value that it returns or void to indicate that it does not return a value. This is followed by the function name, formal arguments in parentheses, and body lines in braces. In C++, a function declared in a class (as non-static) is called a member function or method.
A function call using named parameters differs from a regular function call in that the arguments are passed by associating each one with a parameter name, instead of providing an ordered list of arguments. For example, consider this Java or C# method call that doesn't use named parameters:
A closure-constructing operator creates a function object from a part of the program: the part of code given as an argument to the operator is part of the function, and so is the lexical environment: the bindings of the lexically visible variables are captured and stored in the function object, which is more commonly called a closure.
In most programming languages, functions may take one or more arguments. Usually, each argument must be specified in full (this is the case in the C programming language [1]). Later languages (for example, in C++) allow the programmer to specify default arguments that always have a value, even if one is not specified when calling the function.
Intuitively, partial function application says "if you fix the first arguments of the function, you get a function of the remaining arguments". For example, if function div(x,y) = x/y, then div with the parameter x fixed at 1 is another function: div 1 (y) = div(1,y) = 1/y.