Search results
Results from the WOW.Com Content Network
code.google.com /p /libfixmath libfixmath is a platform-independent fixed-point math library aimed at developers wanting to perform fast non-integer math on platforms lacking a (or with a low performance) FPU .
Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.
In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.
Variable length arithmetic represents numbers as a string of digits of a variable's length limited only by the memory available. Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions.
In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating-point value has a significand with a leading digit of zero.
Arithmetic underflow can occur when the true result of a floating-point operation is smaller in magnitude (that is, closer to zero) than the smallest value representable as a normal floating-point number in the target datatype. [1] Underflow can in part be regarded as negative overflow of the exponent of the floating-point value. For example ...
This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.
The C99 standard includes new real floating-point types float_t and double_t, defined in <math.h>. They correspond to the types used for the intermediate results of floating-point expressions when FLT_EVAL_METHOD is 0, 1, or 2. These types may be wider than long double. C99 also added complex types: float _Complex, double _Complex, long double ...