Search results
Results from the WOW.Com Content Network
The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).
In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f ( t ) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral
This concept may be useful when the successive integrals of () are readily available (e.g., plain exponentials or sine and cosine, as in Laplace or Fourier transforms), and when the n th derivative of vanishes (e.g., as a polynomial function with degree ()). The latter condition stops the repeating of partial integration, because the RHS ...
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols ∇ ⋅ ∇ {\displaystyle \nabla \cdot \nabla } , ∇ 2 {\displaystyle \nabla ^{2}} (where ∇ {\displaystyle \nabla } is the nabla operator ), or Δ ...
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
The product of 1-D sinc functions readily provides a multivariate sinc function for the square Cartesian grid : sinc C (x, y) = sinc(x) sinc(y), whose Fourier transform is the indicator function of a square in the frequency space (i.e., the brick wall defined in 2-D space).