Search results
Results from the WOW.Com Content Network
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
14,179: the number of digits is odd (5) → 417 − 1 − 9 = 407: 0 − 4 − 7 = −11 = −1 × 11. 12: It is divisible by 3 and by 4. [6] 324: it is divisible by 3 and by 4. Subtract the last digit from twice the rest. The result must be divisible by 12. 324: 32 × 2 − 4 = 60 = 5 × 12. 13: Form the alternating sum of blocks of three from ...
That is, although 360 and 2520 both have more divisors than any number twice themselves, 2520 is the lowest number divisible by both 1 to 9 and 1 to 10, whereas 360 is not the lowest number divisible by 1 to 6 (which 60 is) and is not divisible by 1 to 7 (which 420 is).
The rule is that if the year is divisible by 100 and not divisible by 400, the leap year is skipped. The year 2000 was a leap year, for example, but the years 1700, 1800, and 1900 were not.
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 (sequence A005843 in the OEIS). An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a).
the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
There is a leap year in every year whose number is divisible by 4, but not if the year number is divisible by 100, unless it is also divisible by 400. So although the year 2000 was a leap year, the years 1700, 1800, and 1900 were common years.