Search results
Results from the WOW.Com Content Network
In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
so 3 × 17 = 30 + 21 = 51. This is the "grid" or "boxes" structure which gives the multiplication method its name. Faced with a slightly larger multiplication, such as 34 × 13, pupils may initially be encouraged to also break this into tens. So, expanding 34 as 10 + 10 + 10 + 4 and 13 as 10 + 3, the product 34 × 13 might be represented:
As another example, in radix 5, a string of digits such as 132 denotes the (decimal) number 1 × 5 2 + 3 × 5 1 + 2 × 5 0 = 42. This representation is unique. Let b be a positive integer greater than 1. Then every positive integer a can be expressed uniquely in the form
Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.
For instance, the first counterexample must be odd because f(2n) = n, smaller than 2n; and it must be 3 mod 4 because f 2 (4n + 1) = 3n + 1, smaller than 4n + 1. For each starting value a which is not a counterexample to the Collatz conjecture, there is a k for which such an inequality holds, so checking the Collatz conjecture for one starting ...
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .