enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes parameters - Wikipedia

    en.wikipedia.org/wiki/Stokes_parameters

    The Stokes I, Q, U and V parameters. The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation.They were defined by George Gabriel Stokes in 1851, [1] [2] as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (I), (fractional) degree of ...

  3. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, [1] is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.

  4. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  5. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).

  6. Stokes relations - Wikipedia

    en.wikipedia.org/wiki/Stokes_relations

    Everything must interfere so that the second and third pictures agree; beam x has amplitude E and beam y has amplitude 0, providing Stokes relations. The most interesting result here is that r=-r’. Thus, whatever phase is associated with reflection on one side of the interface, it is 180 degrees different on the other side of the interface.

  7. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In order to apply this to the Navier–Stokes equations, three assumptions were made by Stokes: The stress tensor is a linear function of the strain rate tensor or equivalently the velocity gradient. The fluid is isotropic. For a fluid at rest, ∇ ⋅ τ must be zero (so that hydrostatic pressure results).

  8. Mueller calculus - Wikipedia

    en.wikipedia.org/wiki/Mueller_calculus

    Mueller calculus is a matrix method for manipulating Stokes vectors, which represent the polarization of light. It was developed in 1943 by Hans Mueller . In this technique, the effect of a particular optical element is represented by a Mueller matrix—a 4×4 matrix that is an overlapping generalization of the Jones matrix .

  9. Stokes operators - Wikipedia

    en.wikipedia.org/wiki/Stokes_operators

    The Stokes operators are the quantum mechanical operators corresponding to the classical Stokes parameters. These matrix operators are identical to the Pauli matrices . External links