Search results
Results from the WOW.Com Content Network
The conduction of current of intrinsic semiconductor is enabled purely by electron excitation across the band-gap, which is usually small at room temperature except for narrow-bandgap semiconductors, like Hg 0.8 Cd 0.2 Te. The conductivity of a semiconductor can be modeled in terms of the band theory of solids.
The carrier density is important for semiconductors, where it is an important quantity for the process of chemical doping. Using band theory, the electron density, is number of electrons per unit volume in the conduction band. For holes, is the number of holes per unit volume in the valence band.
The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material,; v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and
In electronics and semiconductor physics, the law of mass action relates the concentrations of free electrons and electron holes under thermal equilibrium.It states that, under thermal equilibrium, the product of the free electron concentration and the free hole concentration is equal to a constant square of intrinsic carrier concentration .
In solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices , such as photodiodes , light ...
In an intrinsic or lightly doped semiconductor, μ is close enough to a band edge that there are a dilute number of thermally excited carriers residing near that band edge. In semiconductors and semimetals the position of μ relative to the band structure can usually be controlled to a significant degree by doping or gating.
As carriers are generated (green:electrons and purple:holes) due to light shining at the center of an intrinsic semiconductor, they diffuse towards two ends. Electrons have higher diffusion constant than holes leading to fewer excess electrons at the center as compared to holes. The equation above can be applied to model semiconductor devices.
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.