enow.com Web Search

  1. Ad

    related to: trigonometry angle of elevation examples in real life

Search results

  1. Results from the WOW.Com Content Network
  2. Altitude (triangle) - Wikipedia

    en.wikipedia.org/wiki/Altitude_(triangle)

    In an obtuse triangle (one with an obtuse angle), the foot of the altitude to the obtuse-angled vertex falls in the interior of the opposite side, but the feet of the altitudes to the acute-angled vertices fall on the opposite extended side, exterior to the triangle. This is illustrated in the adjacent diagram: in this obtuse triangle, an ...

  3. Hypsometer - Wikipedia

    en.wikipedia.org/wiki/Hypsometer

    An example of such a scale hypsometer is illustrated here, and can be seen to consist of a sighting tube, a fixed horizontal scale, and an adjustable vertical scale with attached plumb line. The principle of operation of such a scale hypsometer is based on the idea of similar triangles in geometry.

  4. Uses of trigonometry - Wikipedia

    en.wikipedia.org/wiki/Uses_of_trigonometry

    In Chapter XI of The Age of Reason, the American revolutionary and Enlightenment thinker Thomas Paine wrote: [1]. The scientific principles that man employs to obtain the foreknowledge of an eclipse, or of any thing else relating to the motion of the heavenly bodies, are contained chiefly in that part of science that is called trigonometry, or the properties of a triangle, which, when applied ...

  5. Seked - Wikipedia

    en.wikipedia.org/wiki/Seked

    The most famous example of a seked slope is of the Great Pyramid of Giza in Egypt built around 2550 BC. Based on modern surveys, the faces of this monument had a seked of ⁠5 + 1 / 2 ⁠ , or 5 palms and 2 digits, in modern terms equivalent to a slope of 1.27, a gradient of 127%, and an elevation of 51.84° from the horizontal (in our 360 ...

  6. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  7. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths.

  8. Triangulation - Wikipedia

    en.wikipedia.org/wiki/Triangulation

    In China, Pei Xiu (224–271) identified "measuring right angles and acute angles" as the fifth of his six principles for accurate map-making, necessary to accurately establish distances, [5] while Liu Hui (c. 263) gives a version of the calculation above, for measuring perpendicular distances to inaccessible places.

  9. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    To find an unknown angle, the law of cosines is safer than the law of sines. The reason is that the value of sine for the angle of the triangle does not uniquely determine this angle. For example, if sin β = 0.5, the angle β can equal either 30° or 150°. Using the law of cosines avoids this problem: within the interval from 0° to 180° the ...

  1. Ad

    related to: trigonometry angle of elevation examples in real life